A Multivariate Ornstein-Uhlenbeck Type Stochastic Volatility Model

نویسندگان

  • Christian Pigorsch
  • Robert Stelzer
چکیده

Using positive semidefinite processes of Ornstein-Uhlenbeck type a multivariate Ornstein-Uhlenbeck (OU) type stochastic volatility model is introduced. We derive many important statistical and probabilistic properties, e.g. the complete second order structure and a state-space representation. Noteworthy, many of our results are shown to be valid for the more general class of multivariate stochastic volatility models, which are driven by a stationary and square-integrable covariance matrix process. For the OU type stochastic volatility our results enable estimation and filtering of the volatility which we finally demonstrate with a short empirical illustration of our model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The multivariate supOU stochastic volatility model

Using positive semidefinite supOU (superposition of Ornstein-Uhlenbeck type) processes to describe the volatility, we introduce a multivariate stochastic volatility model for financial data which is capable of modelling long range dependence effects. The finiteness of moments and the second order structure of the volatility, the log returns, as well as their “squares” are discussed in detail. M...

متن کامل

Tail Behavior of Multivariate Lévy-Driven Mixed Moving Average Processes and supOU Stochastic Volatility Models

Multivariate Lévy-driven mixed moving average (MMA) processes of the type Xt = ∫ ∫ f(A, t − s)Λ(dA, ds) cover a wide range of well known and extensively used processes such as Ornstein-Uhlenbeck processes, superpositions of Ornstein-Uhlenbeck (supOU) processes, (fractionally integrated) CARMA processes and increments of fractional Lévy processes. In this paper, we introduce multivariate MMA pro...

متن کامل

Statistical estimation of multivariate Ornstein-Uhlenbeck processes and applications to co-integration

Ornstein-Uhlenbeck models are continuous-time processes which have broad applications in finance as, e.g., volatility processes in stochastic volatility models or spread models in spread options and pairs trading. The paper presents a least squares estimator for the model parameter in a multivariate Ornstein-Uhlenbeck model driven by a multivariate regularly varying Lévy process with infinite v...

متن کامل

Mixing Conditions for Multivariate Infinitely Divisible Processes with an Application to Mixed Moving Averages and the supOU Stochastic Volatility Model

We consider strictly stationary infinitely divisible processes and first extend the mixing conditions given in Maruyama [18] and Rosiński and Żak [23] from the univariate to the d-dimensional case. Thereafter, we show that multivariate Lévy-driven mixed moving average processes satisfy these conditions and hence a wide range of well-known processes such as superpositions of Ornstein-Uhlenbeck (...

متن کامل

Viscosity Solutions and American Option Pricing in a Stochastic Volatility Model of the Ornstein-Uhlenbeck Type

In this paper, we study the valuation of American type derivatives in the stochastic volatility model of Barndorff-Nielsen and Shephard [4]. We characterize the value of such derivatives as the unique viscosity solution of an integral-partial differential equation when the payoff function satisfies a Lipschitz condition.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009